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Use of electrochemical current noise method to monitor
carbon steel corrosion under mineral wool insulation
Yang Hou 1✉, Thunyaluk Pojtanabuntoeng1 and Mariano Iannuzzi1

Corrosion of carbon steel under mineral wool insulation was studied using the electrochemical current noise (ECN) method.
Intensities of corrosion were validated using gravimetry, and the form of corrosion confirmed using optical microscopy. The
standard deviation of the current noise signal agreed with weight loss results and was demonstrated as a reliable indicator of the
degree of corrosion under mineral wool insulation. Recurrence quantification analysis was used to extract feature variables from
ECN signals, which were later used to develop a random forest model to identify the type of corrosion, i.e., uniform or localised
corrosion. The trained model was successfully applied to predict the extent of localised corrosion associated with mineral wool
insulation.
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INTRODUCTION
Petrochemical plants and refineries, among others, have been
fighting corrosion under insulation (CUI) for decades. Despite
these efforts, CUI occurs recurrently and remains a focal challenge
for safe operations in those industries. In this regard, ~40–60% of
the pipe maintenance costs is related to CUI detection and
damage repairs1,2.
CUI damage is not visible from the outside and cannot be

detected easily3. Although some non-destructive examination
(NDE) techniques can be used for CUI detection without having to
remove—or only require partial removal of—the insulation and
jacketing or cladding4, in a complex industrial site there are always
areas that are impossible to access. Thus, the full removal of the
insulation becomes the most effective approach to assess the
severity of CUI in those areas5. However, this process is expensive
and time-consuming requiring, e.g., inspecting extensive insulated
pipe networks and components, long process downtime and high
labour cost6,7.
Risk-based methodologies are commonly used to decide where

and when to implement inspection campaigns8. However, the
actual hitting rate of identifying truly active CUI sites may be
improved through in situ CUI monitoring. It is anticipated that an
early CUI detection may assist in locating affected areas for
inspection, thereby reducing the overall maintenance costs9.
Several on-line monitoring techniques have been investigated

under CUI environments. Ayello et al.9 proposed the use of a radio
frequency identification (RFID) tag connected with a Cu–Mg
galvanic couple for CUI detection. When the galvanic couple was
wet, the RFID tag will be activated, indicating the presence of
moisture in the insulation system. Similarly, He10 developed a CUI
sensor based on a passive RFID tag. A thin steel sheet was
attached to the surface of the RFID transponder as an RF shielding
layer. The strength of the RF signal received by the RFID receiver
increased as the shielding effectiveness of the steel sheet
decreased due to corrosion. A correlation between the signal
strength and corrosion rate was established for further CUI
monitoring. However, RFID tags that can withstand high
temperatures may be required if they are used under hot service
conditions5. Moreover, the presence of metallic jacketing may

interfere with the readable RFID signals and this technique is not
sensitive to localised corrosion10. Cho et al.11 applied an optical
fibre humidity sensor and acoustic emission (AE) technique for CUI
detection. Although it can provide an early warning of water
intrusion and active CUI, the intensity and form of corrosion
cannot be estimated. Additionally, partial removal of insulation is
required to facilitate the AE measurement, making it unsuitable for
continuous monitoring of CUI.
It is widely accepted that the root cause of CUI is the presence

of water or moisture at the interface between the external surface
of the metal component and the thermal insulation, creating
electrochemical corrosion cells12–14. Conventional corrosion mon-
itoring methods, such as electrochemical impedance spectroscopy
(EIS) and electrical resistance (ER) can estimate general corrosion
rates; however, they are inadequate for detecting localised
corrosion15–17, which is highly likely to be associated with
CUI18,19. Moreover, it is challenging to obtain valid electrochemical
results in low-moisture and high ER environments such as those
commonly present in CUI situations20. Electrochemical noise (EN),
on the other hand, has been reported as a promising tool for
detecting localised corrosion21, including in low moisture condi-
tions, such as atmospheric corrosion22 and soil corrosion23.
Recently, Yang et al. introduced a corrosion monitoring approach
based on recurrence quantification analysis (RQA) of EN and
machine learning (ML) methods, capable of differentiating
between pitting corrosion and uniform corrosion processes24,25.
This approach was also successfully applied to monitor corrosion
mechanisms of carbon steel buried in various types of ore cargoes
with low moisture contents26. However, there is limited research
on the use of EN-based approaches to study CUI rates and
mechanisms.
The objective of this work was, therefore, to evaluate the use of

EN for real-time CUI monitoring. Herein, electrochemical current
noise (ECN) was measured with a custom-built sensor comprising
two identical half-ring steel samples. The corrosion rates and
mechanisms of the top and bottom sections of a pipe under
mineral wool thermal insulation were investigated using the
methodology developed by Yang et al.26. The standard deviation
(SD) of the measured ECN data was correlated with the wet/dry
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condition and the severity of corrosion under different experi-
mental variables. Additionally, a random forest (RF) model based
on the recurrence quantification feature variables extracted from
the ECN signals was established for detecting localised CUI. The
potential of EN and RF methods for CUI monitoring is discussed.

RESULTS AND DISCUSSIONS
Corrosion rate and maximum pit depths
Figure 1 shows the surface morphologies of half-ring samples after
experiments with and without the addition of a volatile corrosion
inhibitor (VCI). The corrosion products were removed according to
the procedures described in the ASTM G1 standard. As can be
seen, in both situations, the samples placed at the 6 o’clock (i.e.,
bottom) position were uniformly corroded, while localised
corrosion occurred on the top samples (i.e., 12 o’clock position).
The corrosion rates based on weight loss and maximum pit

depths were measured, and the results are presented in Fig. 2a, b,
respectively. It can be seen that, in the absence of VCI, the top
samples (i.e., 12 o’clock position) experienced a high uniform
corrosion rate of 1.88 mm year−1 while that of the bottom samples
(i.e., 6 o’clock position) was 0.2 mm year−1. The addition of the VCI
reduced the corrosion rate to 0.53 mm year−1 for top samples.
However, the corrosion rate of the bottom samples was 0.16 mm
year−1, i.e., similar to that without VCI. Regarding the extent of
localised corrosion, a maximum pit depth of 844 µm was found on
the top samples in the absence of VCI. In contrast, the addition of
VCI reduced the maximum pit depth of the top samples to
148 µm.

Estimation of corrosion intensities under insulation
Figure 3 shows a segment of an ECN signal associated with dry
and wet insulation in the presence and absence of VCI, as
indicated. As can be seen, the surface of the EN sensor remained
dry in the absence of active corrosion propagation during the dry

Fig. 1 Surface morphologies of carbon steel half-ring samples after corrosion product removal. a Sample at the top section of the test rig
without VCI. b Sample at the top with VCI. c Sample at the bottom without VCI. d Sample at the bottom with VCI.

Fig. 2 Effects of VCI on the corrosion of carbon steel under
mineral wool insulation. a Uniform corrosion rates of carbon steel
half-ring specimens with and without VCI. Bars represent the
average value of triplicate samples, and the error bars indicate the
corresponding standard deviation. b Maximum pit depths of carbon
steel half-ring specimens with and without VCI. The pit depths were
associated with the deepest pits found among the triplicate
specimens; thus, no error bars are shown.
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cycles, resulting in an ECN signal that appeared to be random
noise with an extremely low amplitude, i.e., around 10−10 A cm−2.
In comparison, the magnitudes of the ECN signals related to the
wet insulation were approximately three orders of magnitude
higher than those of the dry condition, suggesting high corrosion
intensities. Additionally, the transients present in the ECN signals
obtained with the top sensors suggested the occurrence of pitting
corrosion27.
Figure 4 shows the SDs calculated from segmented ECN signals

obtained during the experiments, where a horizontal line at 10−10

A cm−2 indicates the dry condition baseline, derived from the ECN
segment shown in Fig. 3. SD values below the dry baseline
indicate no corrosion while values above it suggest active CUI
propagation. As can be seen, the current SDs associated with both
top and bottom specimens were all above the baseline during the
14-day tests, indicating that corrosion was continuously active on
the steel samples under the mineral wool insulation. In this regard,
the addition of VCI led to a decrease in current SD values for both
top and bottom sections, indicating lower corrosion intensities,
which was in agreement with the corrosion rates shown in Fig. 2a.
A separate experiment was conducted to determine whether the

current SD signal can be used as a suitable indicator for monitoring
insulation dry-out, which involved accelerating the drying process.

In this experiment, the mineral wool insulation was directly
exposed to the ambient without the metallic jacketing. Two wet/
dry cycles were carried out. In the first cycle, the insulation was
soaked in artificial seawater overnight, and ECN measured once the
temperature of the test rig reached 80 °C. The second wetting cycle
was initiated on day 3 by injecting 1000mL of artificial seawater
from the top section of the insulation using a syringe. Figure 5
shows the variations of current SDs obtained from this experiment.
As can be seen, in the first cycle, both top and bottom sections

dried in less than 2 days since the absence of the metal jacket
facilitated water evaporation. The second wetting cycle started on
day 3 resulted in a sharp increase in current SD for both top and
bottom sections, suggesting an increase in corrosion activity.
Subsequently, the top section dried out in within 2 days, while the
bottom section remained wet for about 3 days before it was
completely dry. For the bottom section, current SD gradually
decreased with time, indicating that the intensity of corrosion
activities diminished gradually as the insulation dried. Although
the current SD associated with the top section was approximately
two orders of magnitude higher than that of the bottom section
during the wet period, the shorter time of wetness decreased the
exposure time and could reduce the overall corrosion attack. As a
result, the average corrosion rates of the top and bottom sections
could be similar when taken over the full exposure period. Indeed,
weight loss measurements after 6 days confirmed this assumption,
i.e., both the top and bottom sections had a corrosion rate around
0.09mm year−1.
Additionally, the post-test analysis revealed that the top ECN

sensor mainly underwent uniform corrosion. However, some
shallow pits (i.e., between 2 and 14 μm) initiated during each wet
period, as shown in Fig. 6a. In contrast, isolated pits were found on
the bottom ECN electrode. The maximum pit depth was 37 µm, as
shown in Fig. 6b.

Development of RF classification model
As discussed previously, mineral wool insulation without the
addition of a VCI resulted in localised corrosion of the top section
and uniform corrosion on the bottom samples. An RF model with
tree-bagging algorithms was developed to distinguish between
the two types of corrosion processes. Firstly, 12 feature variables
were extracted from the ECN signals by the RQA method26.
Secondly, these variables were labelled as uniform or pitting to
reflect the corrosion processes. Thirdly, 70% of the labelled
variables were randomly selected to train an RF model containing
100 decision trees. Once the model was trained, the classification

Fig. 3 ECN segments obtained with top and bottom sensors
covered by dry insulation and wet insulation with and without
the addition of VCI. a ECN segment associated with dry insulation.
b ECN segment related to the top section under wet insulation
without VCI addition. c ECN segment related to the bottom section
under wet insulation without VCI addition. d ECN segment related
to the top section under wet insulation with VCI addition. e ECN
segment related to the bottom section under wet insulation with
VCI addition.

Fig. 4 Variations of the current SDs with exposure time. Triangles
represent the top section and dots represent the bottom section.
The area above the dry baseline is related to wet steel surface and
active corrosion under insulation, while that below the baseline
means the insulation system is dry and safe from corrosion attack.
Lines added to aid trend visualisation.

Fig. 5 Current SDs obtained from two wet/dry cycles with mineral
wool insulation without jacketing. Horizontal line indicates the dry
condition baseline. Values above the baseline indicate wet condition
with corrosion activities, while those at or below the baseline
suggest dry condition and without corrosion activities. Lines added
to aid trend visualisation.
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accuracy was evaluated using out-of-bag (OOB) error28. Finally, the
accuracy of the model was validated by comparing the predicted
and actual corrosion types for the other 30% of the labelled
feature variables. After validation, the established RF model could
be used to automatically identify the corrosion mechanisms
associated with other mineral wool insulated systems. Similar
approaches have been applied for assessing the forms of
corrosion of carbon steel buried in iron ore and coal26. Details
regarding feature variable extractions, the concept of OOB error,
and the procedures of training and validation of the RF model are
presented in the Methods section of this paper.
Figure 7 shows the OOB error with an increasing number of

trees grown in the forest. Five independent training processes
were implemented, obtaining similar results, which confirmed the
robustness of the RF algorithm. As can be seen, the OOB error
decreased as the number of trees increased from 1 to 10.
Afterwards, the OOB error reached a stable value of around 0.09.
In other words, the RF model could accurately discriminate
between localised and uniform corrosion with a classification error
<10% when 20 or more trees are present in the forest.
Once the accuracy of the model was confirmed, the test

datasets were processed by the RF algorithm for classification.
Figure 8 compares the original and the predicted labels. The
majority of the test data associated with the bottom section were
correctly identified as uniform, and those from the top section
were identified as localised corrosion. The overall prediction
accuracy was 91%, computed from the ratio of correctly classified
test data to the total number of test data.

Application of the classification model
The trained RF model was applied to identify the dominant
corrosion types (i.e., localised vs. uniform) of the carbon steel

samples during the 14-day experiment with VCI and the 6-day test
with two wet/dry cycles. The raw ECN data were first consecutively
divided into equal segments, followed by RQA to extract feature
vectors from each ECN segment. Depending on the duration of
the ECN sampling, the total number of segments varied from 8 to
30 for each day. Afterwards, all the feature vectors were submitted
to the RF model to predict the corrosion type. The predicted ‘%
localised corrosion’ for each day was obtained based on Eq. (1):

% localised corrosion ¼ Number of segments predicted as localised corrosion
Total number of segments

´ 100%:

(1)

Figure 9 shows the percentage of ECN data predicted as
localised corrosion over 14 days under mineral wool insulation in
the presence of a VCI. According to the model, the bottom section
suffered mainly uniform corrosion with up to 10% of the readings
identified as localised corrosion. In comparison, more fractions of
the ECN data were classified as localised corrosion for the top
samples during the first 10 days, suggesting a greater extent of
localised corrosion compared to that of the bottom samples. Since
the overall fraction of localised corrosion was less than 50%, it is
plausible to assume that localised corrosion of the top section in
the presence of VCI was less severe than that of the VCI-free
condition. These assumptions agreed with the surface morphol-
ogies and the maximum pit depths shown in Figs. 1 and 2.
Figure 10 shows the prediction results associated with the

validation test with mineral wool insulation without jacketing and
without VCI. As indicated in Fig. 5, active corrosion only occurred
on day 1 and day 3 for the top section, and two more days (i.e.,
days 4 and 5) for the bottom section. ECN data measured on these
days were selected for corrosion type identification. As can be
seen, most of the ECN segments related to the bottom section

Fig. 6 Surface morphologies of ECN sensors after corrosion product removal. a Top ECN sensor showing superficial general corrosion. b
Bottom ECN sensor showing distinct pitting corrosion. The sensors were retrieved from the mineral wool insulation system without jacketing.

Fig. 7 Out-of-bag classification error of the RF model. It shows
that the model can correctly discriminate between uniform and
localised corrosion with a percentage error <10% when the RF
model contains more than 20 independent decision trees.

Fig. 8 Comparison between the actual corrosion types and the
predictions of the RF model for the test dataset associated with
mineral wool insulation. Overlaps of circles and crosses indicate the
corrosion forms associated with the bottom and top sections are
correctly identified as uniform and localised, respectively.
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were predicted as localised corrosion, which correlated with the
surface morphologies shown in Fig. 6b.
In contrast, only 35% of the ECN data obtained on day 3 were

predicted as localised corrosion for the top section. Given that the
top section had a relatively short time of wetness, pit propagation
was limited by the cathodic reaction on the reduced wet surface
area surrounding a given pit29,30. Therefore, the overall predictions
can be viewed as consistent with the surface morphologies shown
in Fig. 6a.

Limitations of the methodology
The use of ECN data to detect insulation dry-out and the
application of the RF model to predict the forms of corrosion
were shown to be promising tools for in situ CUI monitoring.
Nonetheless, some limitations still exist, which require further
investigation:

(1) Only qualitative results regarding corrosion intensities were
obtained according to the current SD. More experimental
data are required to quantify the relationship between SD
and corrosion rates.

(2) The RF model presented in this work was trained with the
experimental data collected from the mineral wool insula-
tion case, and it may not apply to other types of insulation
materials. In this regard, future investigations will focus on
expanding the training database to include a variety of
insulation materials and exploring different methods to
extract feature variables from ECN data. Additionally, efforts
can be made to predict the intensity of localised corrosion
based on EN data with longer exposure time.

METHODS
Experimental
Half-ring samples were cut from seamless UNS G10220 carbon steel pipes.
The outer diameters of the half-ring samples were 60mm, and their width
was 10mm. The chemical composition of the steel samples was (wt. %):
0.22 C, 0.94 Mn, 0.24 Si, 0.05 Cr, 0.01 P, 0.08 Cu, 0.03 Mo, 0.02 Ni, 0.01 Al and
Fe (balance). Before each experiment, the steel samples were electro-
coated with POWERCRON® 6000CX, and the outer surface wet ground
down to 600 grit SiC paper. Afterwards, the samples were rinsed with
deionized water and ethanol, followed by drying with compressed
nitrogen gas. The ECN sensor consisted of two half-ring samples cut from
the same steel pipe with conducting wires soldered onto each sample.
A mineral wool insulation material was used in this study. Artificial

seawater prepared according to ASTM D1141 was used as the test solution.
A commercially available VCI was used in the insulated system with
mineral wool to evaluate its effectiveness in terms of CUI mitigation.

The test assembly used in this work was adapted from ASTM G189.
Figure 11a–c shows the 3D rendering of the fully assembled setup,
specimens and EN sensors underneath insulation and jacketing, and a
cross-section view of the assembly, respectively. Figure 11d presents the
actual assembly with the right-hand side showing the location of the
specimens. This design facilitates two sets of tests with different conditions
at the same time and investigating the corrosion behaviour of top and
bottom sections separately.
Firstly, three half-ring samples and one ECN sensor were placed on the

top and bottom of the test rig, respectively. Afterwards, the insulation was
placed around the samples and jacketed with a UNS S31603 sheet. Two
holes with a diameter of 6 mm spaced 50mm apart were drilled at the
bottom of the jacketing. The insulation and jacketing were held in place
using a stainless steel ring clamp. Both ends of the jacketed insulation
were closed with a polycarbonate cap. Afterwards, the lap joints were
sealed with silicone sealant. The surface temperature of the test rig was
controlled using an immersion heater. Artificial seawater was slowly
injected into the insulation once the surface temperature of the test rig
reached 80 °C. The total volume of injected seawater was 2.5 L, which was
five times the weight of the dry insulation used. Table 1 shows the
designed test conditions applied in this study.
For Test no. 2, once the surface temperature of the test rig was stabilised

at 80 °C, 2 mL of a commercially available VCI used to treat CUI was
injected into the dry insulation before the wetting step. The volume of
injected VCI was equivalent to 660mL per cubic metres (m3) of the
insulation volume. Test no. 3 was performed to evaluate the sensitivity of
the ECN technique for CUI monitoring. The insulation was soaked in
artificial seawater overnight before testing and re-wetted with 1 L of
seawater after 2 days. The test was stopped on day 6 when the insulation
was completely dry.
ECN was measured using the ESA410 data acquisition software with a

Gamry Reference 600 potentiostat in ZRA mode. The sampling rate was
2 Hz. ECN was recorded for at least 2 h daily for each test with a built-in
low-pass filter applied to avoid aliasing in the data. Matlab 2019a with the
built-in Statistics and Machine Learning Toolbox was used to process
ECN data.
At the end of the exposure, samples were retrieved and cleaned as per

ASTM G1 (ref. 31) to obtain corrosion rate values based on mass loss. The
extent of localised corrosion was examined based on the maximum pit
depths, which were measured using an infinite focus microscope (Alicona
Instruments).

Methodology for ECN data processing
The proposed method for CUI monitoring had two main objectives: (1) the
estimation of corrosion intensities and (2) the identification of the
prevalent forms of corrosion in the case of active corrosion. Figure 12
shows the framework of the proposed method. Overall, two stages are
involved in this method; i.e., an off-line stage to establish the baseline in
terms of corrosion intensities and dominant corrosion types, and an on-
line stage, in which newly measured ECN data are assessed and compared
with the baseline to predict the corrosion activities of the insulated system.

Fig. 9 Percentage of ECN data predicted by the RF model as
localised corrosion for both top and bottom samples under
mineral insulation with VCI addition. Lines added to aid trend
visualisation. This figure implies that the top section suffered from a
greater extent of localised corrosion attack than the bottom section.

Fig. 10 Percentage of localised corrosion predicted by the RF
model for top and bottom samples under mineral wool insulation
without VCI addition and jacketing. Lines added to aid trend
visualisation. It indicates that dominant form of corrosion for the
bottom section is localised, which is in line with the surface
morphology of the ECN sensor after corrosion product removal, as
shown in Fig. 6b.
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Specifically, the SD of the measured ECN is chosen to indicate corrosion
intensities. Before extracting the SD value, it is necessary to remove the
direct current (DC) drift in the raw data to convert the signal to a quasi-
stationary state27. It has been demonstrated that very different SD values
could be obtained with different drift removal methods32. However, as a
statistic parameter, SD is a measure of the total power of the signal, which
contains a series of frequencies27,32,33. In terms of corrosion monitoring,
the changes in the SD values may provide additional information to the
simple comparison of absolute values, as long as the trend removal
method was kept the same for all cases32. Therefore, a simple linear
detrending method was employed instead of more complicated methods,
such as 5-order polynomial fitting and wavelet analysis. Current SD
obtained under dry conditions served as a baseline. Corrosion was
considered active only when the SD of the measured ECN was above the
baseline. RQA was used to extract feature variables from ECN signals. The
extracted feature vectors were then used as inputs to train an RF classifier.
After training, the RF model was used to predict the dominant corrosion
types of newly measured ECN data.
Figure 13 illustrates the procedures to generate the representative

current SD for each day. For instance, suppose that on day 1, 7200 s of ECN
data were recorded, there would, then, be n= 4 short segments in total.
For each segment, the DC drift was removed by subtracting the linear
trend from the raw data32. Afterwards, the SD of each segment was
calculated, and the average SD values of the four segments obtained and
reported.

Recurrence quantification analysis
RQA refers to the characterisation of small structures in a recurrence plot
(RP). RP is a graphical tool developed in the late 20th century for visualising
the recurrence behaviours in dynamic systems34. RQA-based methods

have been successfully applied to numerous fields such as the detection of
dynamical transitions35, ecological regimes36,37, economical dynamics38,
medical signal analysis39,40, chemical reactions41,42 and damage detec-
tion43. In recent years, RQA has also been employed to analyse
electrochemical noise data24,44–46.
An RP can be expressed mathematically by Eq. (2). In this study, xi and xj

represent the measured current data at times i and j, and ||·|| denotes the
Euclidean distance between any two data points, N is the total number of
data points in the current noise signal, ε is a pre-defined threshold value, H
represents Heaviside function which produces one when the value in the
parenthesis is negative and otherwise zero34. Therefore, the resultant R is a
matrix composed of zeros and ones. There are several options proposed in
the literature for the selection of ε47–49. In this study, the threshold was
fixed as 50% of the SD of the Euclidean distances for all pairs of data points
contained in the measured ECN signal.

Ri;j ¼ H ε� xi � xj
�
�

�
�

� �

; i; j ¼ 1; 2; ¼ ;N: (2)

If a black dot is assigned to Rij= 1 and a white dot to Rij= 0, then the
matrix R can be transformed into a graph, referred to as, RP. Figure 14
presents an example of ECN segment (top) and associated RP (bottom). As
can be seen, the black dots formed some small structures. These structures
can be quantified by a number of variables. In this work, 12 feature
variables were extracted and collectively used to quantify the RP plots.
Because the RPs can be viewed as the graphical transformation of the
original ECN data, the feature variables can be considered as the
characteristics of the ECN signal. A publicly available Matlab toolbox
—“Cross Recurrence Plot (CRP)” toolbox—developed by Norbert Marwan34

was used in this work to generate RPs and quantification variables. Details
of what the variables represent and how they are calculated can be found

Table 1. Experimental conditions applied in the study.

Test no. Insulation VCI (mL) Jacketing Wetting media Temperature (°C) Duration (day)

1 Mineral wool 0 Yes Artificial seawater 80 14

2 Mineral wool 2 Yes 14

3 Mineral wool 0 No 6

Fig. 11 Different views of the CUI test assembly. a 3D drawing—full setup. b 3D drawing—insulation and jacket removed. c 3D drawing—
cross-section. d Photo of the setup with the right-hand side showing the arrangement of specimens and EN sensors.
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in the previous work done by the authors24,25 and the original work by
Norbert Marwan34.

Random forest
RF is a supervised ML algorithm, which can be used to solve both
classification and regression problems28. RF consists of multiple decision
trees. A decision tree learning algorithm recursively searches for a binary
partition of input feature variables to generate outputs with homogenous
class labels. However, a single decision tree is susceptible to overfitting,

which means that the tree model may not be able to predict the class
labels of test data correctly even if the model has learned to classify the
given training data with 100% accuracy.
RF overcomes the overfitting issue of decision tree models28,50. An RF

model is generated by bootstrapping (bagging) of training data. During
the training process, original data are randomly divided into subsets, and
each subset is used to train an individual decision tree. Moreover, for each
subset, the feature variables (predictors) are also randomly selected for
splitting at each node of the tree. Additionally, for each tree in the forest, a
set of data is excluded during training. This dataset is called OOB data. The
OOB data are used to estimate the classification error of the RF model.
Specifically, each tree grown in the forest gives a prediction for its OOB
data and the majority votes of the predictions from all the trees are used as
the final prediction of the RF model. The generated prediction error,
namely OOB error, is used as the classification error of the RF model50–52.
Figure 15 shows the step-by-step procedure of data preparation for

training an RF model based on ECN data. The training data were collected
with the top and bottom ECN sensors in Test 1. Specific steps include:

Fig. 14 An example of the ECN signal obtained in this work and
associated recurrence plot. a ECN signal. b Recurrence plot
generated from the ECN signal.

Fig. 12 Flowchart of the proposed method for CUI monitoring.
Off-line stage involves baseline measurement and collecting ECN
data from both uniform and localised corrosion systems for training
the model to distinguish the two forms of corrosion. For the on-line
monitoring, newly measured ECN data will firstly be processed to
compare with the baseline to determine wet/dry condition of the
insulation system. If wet condition is indicated, then the ECN data
will be further examined using the model developed at the off-line
stage to predict the dominant form of corrosion.

Fig. 13 Procedures to generate the current standard deviation
(SD) for each day. The ECN data collected on each day are chopped
into consecutive short segments containing recordings for 1800 s.
DC drift is removed before standard deviation is calculated.

Fig. 15 Steps for training a random forest model to identify
different forms of CUI. Briefly, the procedures include (1) ECN data
segmentation and pre-treatment, (2) converting digital data into
recurrence plot, (3) feature vector extraction, (4) labelling feature vectors
based on data source, (5) model training and (6) model validation.

Y. Hou et al.
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(1) Divide the raw ECN data into short segments and remove DC drift,
as illustrated in Fig. 11. In total, the 14-day experiment resulted in
727 and 860 segments for the bottom and top sections, respectively.

(2) Transform the digital data into RPs.
(3) Extract a feature vector containing the 12 variables that quantify

each RP.
(4) Label all the feature vectors related to bottom ECN segments as ‘1’,

representing uniform corrosion dominated corrosion process, and
those related to the top as 2, representing localised corrosion.

(5) Randomly select 70% of all the labelled feature vectors (1111 vectors
in total) for training the RF model. The rest 30% (476 vectors in total)
served as test dataset, which were not involved in the training
process.

(6) Evaluate the classification accuracy of the trained RF model by
comparing the predicted labels for the test dataset and the original
labels (i.e., Eq. (3)):

Accuracy ¼ Sum ðpredicted labels ¼ original labelsÞ
Total number of vectors in the test dataset

´ 100%: (3)

The trained model was then used to predict the dominant corrosion type
resulted from Tests 2 and 3. For predictions, feature vectors were
generated from the ECN data obtained for each day with the same
methods used during the training process.
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